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Abstract

The effective viscosity of short-fiber suspensions is studied from a theoretical and experimental point of view. The theory of dilute suspensions
with elongated particles is briefly summarized and explicit formulae for the dependence of the intrinsic viscosity on the particle shape
(aspect ratio) are given in a form that should be useful for practical purposes. Concentration regimes, the influence of Brownian motion and
sedimentation kinetics are mentioned. The effective viscosity of suspensions of two polydisperse wollastonites with significantly different
average aspect ratios (approximately 5 and 16, respectively) is measured in dependence of the solids volume fraction and fitted with power-law
models (Krieger and Maron—Pierce relations). It is shown that the intrinsic viscosity determined is higher than theoretically predicted via
the Brenner formula, while the critical volume fraction is lower than predicted by the empirical Kitano relation. Possible reasons for these
discrepancies, common to most real polydisperse systems, are discussed.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction (including extensive work on the relationship between par-
ticle shape and rheology) but most serious results are still
Particles with anisometric shape are ubiquitous in ceramic hidden in the original literature and have not yet found their
technology and materials processing, in general. When prop-way into monographs and textbooks. Therefore, many of the
erly oriented (e.qg. by flow processes) materials with more or results achieved by theoreticians in the field are not eas-
less anisotropic microstructures can be prepared. In particu-ily accessible to the majority of skillful experimenters. In
lar, elongated particles (e.g. short fibers or whiskers) can bethis paper, we propose, using two wollastonite systems as
used to increase the strength and fracture toughness of comparadigmatic examples, a systematic way to confront well-
posites (e.g. ceramic matrix composites). In the case of (afounded theoretical results with results of experimental mea-
certain degree of) preferred orientation (e.g. flow-induced), surements onreal systems. In particular, we give a very simple
short-fiber composites are transversally isotropic materials. relation for the dependence of the intrinsic viscosity on aspect
Therefore, the study of the rheology of fiber suspensions, ratio (Eq.(35)), which approximates the highly sophisticated
in particular, their effective viscosity and its concentration Brenner relation (Eq17)) for many practical situations with
dependence, is of general interest in ceramic technology andsufficient precision. We assume that this approximate rela-
technology today. There is, however, a paradoxical situa- tion, formally the “non-Brownian” counterpart of the widely
tion with respect to fiber suspensions: a considerable amountused Kuhn—Kuhn relation for low-aspect-ratio Brownian par-
of theoretical work has been done during the 20th century ticles (Eq.(31)), will be appealing to other experimental
investigators.
* Corresponding author. Wollastonite, the material chosen as a paradigmatic exam-
E-mail address: pabstw@vscht.cz (W. Pabst). ple for the present study, is an inosilicate (single-chain sili-
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cate, CaSi@). As a result of the internal structure and pre- Note, however, that the assumption of a dependence exclu-
ferred cleavage along the directions [100] and [00 1], the sively on ¢ is only justifiable on pragmatic grounds, i.e.
usual external shape of wollastonite particles is that of elon- when higher-order microstructural information is lacking (cf.
gated needles. According to the recent literafutiee exper- the discussions it and the references given therein). Note
imentally measured density of both triclinic and monoclinic further, that in assuming the existence of a unique (i.e. not
wollastonite is between 2.86 and 3.09 gfcralthough the shear rate-dependent) shear viscosity, one implicitly assumes
calculated theoretical value is around 2.90 giéon both and purely viscous behavior (i.e. no viscoelastic effects) and New-
the JCPDS data sheétsst values of 2.91-2.92 g/cinDue tonian (linear) behavior of the whole suspension (and not only
toits elongated, needle-like shape wollastonite can be used inof the suspending medium). In the dilute limit, i.e. for vol-
ceramic technology to increase the green strength of as-driedume fractiongy — 0, the effective viscosity of suspensions
ceramic products, which need further manipulation in a pro- with rigid, spherical particles is usually assumed to obey the
duction line. This can be especially advantageous for large Einstein relation

ceramic parts in those cases where a certain CaO content can

be tolerated in the raw material mixture (e.g. in sanitary ware 7 = no(1 + 2.5¢). )
production). Elongated particles, however, lead to anincrease

in the viscosity of ceramic suspensions that exceeds the usu he effective suspension viscosity amsithe viscosity of the
increase encountered for isometric particles. This is usually asuspending medium (pure liquid). In order to simplify nota-

disadvantage in ceramic processing, although in other areas;,,'i, the following text, we introduce the relative viscosity
of application this large viscosity-increasing effect of elon-

gated particles might be used to achieve high viscosities with g
relatively low solids loadings (volume fractions). = £7 )

The practical objective of this work is two-fold: first, to Ul
characterize the viscosity increase with volume fraction for
polydisperse wollastonite suspensions containing particles
with different average shape (average aspectratio). Second, t?
compare the measured results with existing theoretical mod-
els and empirical relations and discuss the applicability of the
latter for prediction purposes.

Section2 introduces the basic quantities (effective, rela-
tive and intrinsic viscosity) and briefly summarizes the theory = _

. ; . ; - nr =1+ [n]¢. (4)

of dilute suspensions with elongated particles. Explicit for-
mulae for the dependence of the intrinsic viscosity on the Jeffery, in a rigorous treatment of the motion of a rigid ellip-
particle shape (aspect ratio) are given in a form that should soids and spheroids with a certain aspect rati@s the first
be useful in practice. Concentration regimes, the influenceto calculate values fom] as a function of the particle aspect
of Brownian motion and sedimentation kinetics are also dis- ratio. Therefore, we call E¢4) the Jeffery—Einstein relation.
cussed for the case of suspensions with elongated particles At this point, it should be emphasized that Einstein’s value
(fiber suspensions). Secti@gives material characteristics of 2.5 for the intrinsic viscosity of dilute sphere suspen-
and experimental details concerning the wollastonite suspen-sions, though widely assumed to be valid, is not universally
sions investigated in this work. Sectidrpresents measured acknowledged and has been questioned from the theoretical
data and evaluated results, including the fit parameters deteras well as from the experimental side. Mention should be
mined. Results obtained on the basis of experimentally mea-made of Happel's alternative theoretical re58lt
sured data are discussed and compared to the predictions.

n this equationg is the solids volume fractiom; denotes

and the so-called intrinsic viscosity][

. Nr — 1
= lim . 3
i = lim = 3)
Using the intrinsic viscosity, the Einstein relation can be for-

mally generalized to suspensions of anisometric particles, i.e.

n = no(1 + 5.5¢), 5)
. aclii ior9-11
5. Theoretical and of the so-called Bénskij relatior?
n = no(1+ 4.5¢), (6)

2.1. Effective, relative and intrinsic viscosity
probably based on empirical findings. Unfortunately, the

Effective properties are the macroscopic (|e overall or original Russian source of this relation could not be iden-
large-scale), properties of multiphase materials. In general,tified (ante 1952). It occurs, however, in some of the older
they are dependent on the constituent (i.e. phase) properCzech literatur2'® and is reported to be more appropriate
ties and the microstructure of the material. For two-phase than the Einstein relatio(l). Note that both Eqs(5) and
solid—liquid mixtures with matrix-inclusion type microstruc- ~ (6) are meant for spherical or isometric particles. Thus, the
ture (suspensions), an effective shear viscosit{simply deviation of the intrinsic viscosityy] from Einstein’s value
called “effective viscosity” in the sequel) can be defined and 2.5 in these two relations has nothing to do with anisometric
assumed to be a function of the solids volume fracgon  Particle shape.
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2.2. Model shapes and concentration regimes for fiber can freely rotate in arbitrary directions. According to
suspensions of elongated particles some authorg®-27this estimate is too strictly limiting. Instead
of the volume fraction occurring in Eq7), they propose a

Isometric particles have approximately the same size in value larger by a factor of 24 for the transition from dilute

all directions. Apart from the ideal case of spheres, isometric to semi-dilute. In the semi-dilute regime (where the particles

are, e.g. all regular polyhedra (tetrahedra, cubes, octahe-are not free to rotate end-over-end, but are still sufficiently

dra, dodecahedra and icosahedra) and many other facettefar apart for the mutual hydrodynamic drag exerted by neigh-

and irregular particles. Anisometric particles have at least boring particles to be small), it is necessary to distinguish the

one distinguished direction along which their size is signifi- case of randomly oriented fibers, for which

cantly larger or smaller than perpendicular to it. The simplest

model shapes for approximating real anisometric particles 1 <¢ 1 8)

are rotational ellipsoids (i.e. prolate and oblate spheroids) and R? R’

circular cylinders (i.e. rods and d|sc.s.or f|pers a!"d platelets). and the case of preferentially oriented (aligned) fibers, for

In both cases shape can be quantified via a single numberWhiCh

the aspect ratio. It is evident that the first is the most natural

from a principal point of view, because it includes the sphere 1

as a special case. Moreover, only for spheroids the hydrody- g2 <

namic problem of particle motion in a viscous fluid can be

solved exact|y_ This is the reason Why Spheroids are the pre_m the theory of fiber suspensions the isotropic concentrated

ferred model shapes, e.g. in the rheology of fiber and platelet'egime (where the fiber orientation is random) is defined by

suspension’?-16 Defining the aspect rati® as the ratio  the conditiort3142°

between the long and short axes or half-axes (height/diameter

ratio in the case of cylinders), one can distinguish prolate = ¢, (10)

(elongated) particles witR>1 and oblate (flaky) particles

with R<1. while the maximum concentration up to which the sus-

Of course, for real particle systems (powders), which are nensions can remain isotropic is (according to the Onsager
usually polydisperse with respect to size and shape, the detertheory)%

mination of the aspect ratio is not an easy task and need not
even be useful in all cases, since shape (quantified via the 3.3
aspectratio) need not be (and in general is not) size-invariant.? < R
In other words, similar to the size, also the shape (aspect
ratio) exhibits a distribution, e.g. in the case of oblate parti- Higher concentrations can only be achieved when isotropy
cles (discs) certain shape information, related to the aspectis abandoned (nematic stat&able 1lists the concentration
ratio, can be extracted from the comparison of sedimentationregimes for monodisperse (with respect to size and shape)
and laser diffraction dat¥-21but the interpretation of these ~ particle systems according to E¢8), (10) and (11)n depen-
results is principally complicated by the fact that, in addi- dence of the particle aspect ralioEvidently, Eq(10)cannot
tion to the size distribution, there is a superimposed shapeapply to isometric particles, and Eq40) and (11)are use-
distribution in a real particle system. Nevertheless, in certain less for this case. For a suspension of monodisperse spheres,
cases (viz. when the shape distribution is not correlated to€-9. the critical volume fractiog is approximately 64%
the size distribution, i.e. for each size class the shape distri-(cf.*?~39. This value (much lower than 100%, as predicted
bution is approximately the same), an average aspectRatio PY Egs.(7) and (10) cannot be exceeded unless the suspen-
(usually the arithmetic mean of individual aspect ratios or of Sion looses its ability to flow (blocking phenomenon). For
partial size class averages) can be calculated for the systenguch a system, volume fractions higher than approximately
as a wholet2.23 52% (corresponding to primitive cubic packing) should cer-
For suspensions with elongated particles (modeled astainly be considered as being in the concentrated regime,
long prolate spheroids or long slender rods), in the fol- since the particles are in direct steric contact (excluded-
lowing simply called “fiber suspensions”, it is useful to Vvolume interactions). The densest packing of monodisperse
distinguish three concentration regimes: dilute, semi-dilute spheres (hexagonal closest packing (hcp) or face-centered
and concentratetf1424-26According to the Doi—Edwards ~ cubic (fcc)) corresponds to a volume fraction of approxi-
model for monodisperse fiber Suspensi%‘h%? the dilute mately 74%, while the mentioned approximate value of 64%

¢ <1 9)

(11)

regime should be characterized by the condition corresponds to random close packing (rcp). In the case of
monodisperse fibers, the densest packing can be as high as
¢ < iz @) 91%, but usually no estimates of the lower bound can be
R 9

given. In the case of real systems, which are usually poly-

which is derived from the condition that the mean distance disperse, the critical volume fraction has to be determined
between fibers is larger than half of the fiber length, i.e. the empirically.
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Table 1
Concentration regimes (volume fraction limits in %) of monodisperse (with respect to size and shape) fiber suspensions in dependence of tlee aspect rat
according to Eq9(7), (10) and (11)

Aspect ratio R) Dilute for Transition from semi-dilute to isotropic Maximum concentration of isotropic
¢ <1IR? concentrated ap < 1/R suspensions at< 3.3R

1 100 100 (330)

2 25 50 (165)

3 11 33.3 (110)

4 6.25 25 82.5

5 4 20 66

10 1 10 33

16 0.39 6.25 20.6

25 0.16 4 13.2

50 0.04 2 6.6

100 0.01 1 3.3

1000 0.0001 0.1 0.33

1000000 1010 0.0001 0.00033

2.3. Dependence of the relative viscosity on the solids practice is to be sought in the fact that for monodisperse

volume fraction spheres 1j]¢ ~ 1.85 which is for practical purposes suffi-

ciently close to the Maron—Pierce value of 2. With growing
In a first approximation (cf. the discussion earlier), the particle anisometry, on the other hand, the expected decrease
relative viscosity of a suspensiagn can be assumed to be a inthe critical volume fractiog, is in part compensated by an

function of the solids volume fractio, i.e. increase in the intrinsic viscosity]. With respect to this fact,
the value 2 determined from fitting with the Maron—Pierce
e = 1r(@). (12) relation (Eq(14)), can be considered as a rough estimate for

e intrinsic viscosity fest

Kitano et al?2 used the Maron—Pierce relation for data
fitting. Based on experiments with polymer melts containing
different volume fractions of fibers with different average
aspect rati® (ranging from 6 to 27), they found an approxi-
mately linear relation betweef and the average aspectratio

There have been numerous attempts to find expressionsth
that extending the validity of the Jeffery—Einstein relation
(Eg. (4)) to non-dilute systems (éf.and the references
cited therein). Both exponential (Mooney-type) and power-
law (Krieger-type) relations are popular, although the latter
exhibit a subtle advantage from the theoretical point of iew.
The Krieger relatiof! is

oy = (1 _ ¢’> e (13)  $c= 0.54— 0.0125, (15)
éc

As the case may be, this relation can be considered as a modegometimes reported with other coefficients, yiz= 0.53 —

equation for the prediction of the effective viscosity of sus- 0.013R (cf.333%. Although Eq.(15)is often used and some-

pensions with monodisperse spheres (in this casglsef[5 times recommended for prediction purposes, when a rough

and¢ =0.64) or as a fit equation with oned) or two (¢ estimate of the effective viscosity of fiber suspensions is

and [y]) adjustable fit parameters. Note that the Krieger rela- required and an alternative is not in sight, it has to be kept

tion exhibits correct limit behavior, i.e. the relative viscosity in mind that it is a purely empirical finding. In particular, the

relation reduces to the Jeffery—Einstein relation (@9). for numerical values can be subject to change.

¢ — 0 and goes to infinityy, — oo, as the volume fraction

approacheg — ¢, as required.

Another useful relation is the Maron—Pierce relaton 2.4. Dependence of the intrinsic viscosity on the particle
2 aspect ratio
6\~
Tlr=(1—> , (14) o L .
bc The intrinsic viscosity is a parameter characterizing the

which can be considered as a special case of the Krieger rela_behawor of non-interacting particles in a dilute suspension.

tion, obtained by setting| ¢ = 2. The Maron—Pierce relation Thus, it is rather a characteristic of the particle system than

" . . . of the suspension as a whole. From this, it is plausible that

can be used for fitting purposes instead of the Kriegerrelation , ~.~ >~~~ . . — .
" . -~ . . theintrinsic viscosity depends in the first instance on patrticle
when a two-parameter fit is to be avoided but the intrinsic vis- . . .
i . o shape, i.e. the particle aspect rakio

cosity [] is not known. It is widely used and recommended
in the literature on fiber suspensioffs33-2°|t seems that
the reason for the success of the Maron—Pierce relation in[n] = [7](R). (16)
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Note that the intrinsic viscosity is in general bounded from and

below by the inequalit}?-36 0u 1 { 2Ras } 239)
[7] > 1 ‘T 53 | (R? + 1)ag
According to Brennet? the intrinsic viscosity for simple N these expressions, tis are defined as
shear flow of a suspension with axisymmetric particles (pos- 2 )
sessing fore-aft symmetry) is given by the expression 1= 1(/3R -1). (24a)
15 . 5 2
= _ = _ = R
[ =501~ Q2(sin? 6) g (302 +404) a2 = (1P (24b)
15
x (Sin? 6 cos 2) + —— (302 + 4Q3)(sin’ 6 sin 2p). R2
2BP o3 =——(36+2R* - 5), (24c)
a7) 4(R% — 1)
- i R
In this expression g = 2(R2 42— 38R, (24d)
5N (R?2 — 1)
is a dimensionless parameter and 4(R* - 1)
P=2 (19) K [(2R? + 1) — 3] (24f)
=L A= ——"5 -l
Dy (R2 — 1)
is the rotary Bclet number, withy being the shear rate and where
the rotary_ BrO\_/vman dl_ffu5|on coefficierd, given by the arccoshR
Stokes—Einstein equatidh = ———, (25)
RVRZ -1
P = L (20) for prolate spheroidsR(>1). As a consequence,
6VnoKy
: R?—1
wherek is the Boltzmann constari, the absolute tempera- B = 5 (26)
ture, V the particle volume andp the viscosity of the sus- R°+1
pending medium. The material constan@ndK; (connected The volume of a prolate spheroid is
to the rotation of the axisymmetric particle about a transverse x .
axis) are dependent on the model shape chosen and the aspegt = ?abz = ?Rbg’. 27

ratio (true axis ratio, particle axis ratiB= a/b, wherea is the
polar radius (for prolate shapes half of the length, for oblate For prolate spheroids, like for all axisymmetric particles with
shapes half of the thickness) ahthe equatorial radius (for ~ fore-aft symmetry, the material parameté&s throughQg,
prolate shapes half of the thickness, for oblate shapes half oftogether withk;, N, andB completely determine the behav-

the diameter). For spheroids, in general, ior of the suspension in arbitrary flow proces$egnly five
) of these parameters are independent and all material param-

Ky = 2(R°+1) 1) eters are uniquely defined by the aspect r&tidased on

3(R?%a1 + a2)’ the knowledge o, and the particle size (volum®), the

rotary Feclet number can be estimated, cf. Etp), in order

and to assess the influence of Brownian motion. It is common
N 2(R2 - 1) 22) practice to distinguish three regim&s:
= .
5(R%a1 + a2) ¢ Dominant Brownian motion:
Moreover, P<l (28)
1
01 = B (23a) In this case (“zero shear rate limit”), the intrinsic viscosity
3 [n]o is maximal and can be considered as an upper bound
2 of the intrinsic viscosity. Eq(17) can be approximated as
Q2=15a<1_a5)’ (23b) y. Eq17) pp
3 %6 [n]o =501 — Q2 + 20s. (29)
03 = 1 [R(zo‘lJF“Z) (°‘3> _ 1] ’ (23¢) For high-aspect-ratio spheroid® %> 1), this equation
Sz | Reoy + a2 \ a4 reduces to the well-known approximate result of Kuhn and
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Table 2

Upper bound of the intrinsic viscosity] (P =0), calculated according to
Eq. (29), and lower bound of the intrinsic viscosity]f, (P — 00), calcu-
lated according to Eq17), for dilute suspensions of prolate spheroids in
dependence of the aspect rafio

R [nlo [0
1 25 25
2 291 2.57
3 3.68 2.68
4 4.66 2.8
5 5.81 2.92
6 7.1 3.06
7 8.53 3.14
8 10.1 3.27
9 11.8 3.38
10 13.6 3.44
12 17.7 3.69
14 22.2 3.88
16 27.2 3.93
18 32.6 4.17
20 38.5 4.37
50 176.8 7.68
100 593.7 20.4

First three values in the third column (f& between 1 and 3) corrected
according to Scheraga’s exact numerical calculatfon.

Kuhn38
R? 3 N 1
15|In2R—-05 In2R—-15

while for low-aspect-ratio spheroid® € 15), the approx-
imate expression

[n]o = 2.5+ 0.408(R — 1)15%8,

8
[nlo = +5 (30)

(31)

can be used® The second column ifable Zlists this upper
bound of the intrinsic viscosity]o (i.e. in the case? =0),
calculated according to E€R9), for dilute suspensions of
prolate spheroids in dependence of the aspect Fatio.

e Intermediate Brownian motion:

R+R3>P>»1 (32)

Although in this case the goniometric factors in Eij7)
adopt very simple expressioA%an explicit calculation of
the intrinsic viscosity in the intermediate regime is rather
intricate? However, since intermediate Brownian motion
necessarily requires very large aspect rat®s>(1) for
prolate spheroids, the approximatién

R 13
=2+ A——P 3,
valid for long thin prolate spheroids (with between 0.2
and 0.5), might be a used as an estimate in this region.

e Weak Brownian motion:

(33)

P>1 and P> R+ RS (34)

In this case, the goniometric factors to be inserted in Eq.

(17)are given inTable 3in dependence of the aspect ratio,
according to Brenne? based on the asymptotic results of

W. Pabst et al. / Journal of the European Ceramic Society 26 (2006) 149—160

Table 3
Goniometric factors to be inserted in §G7) in dependence of the aspect
ratio, according to Brenné? based on the results of Hinch and L%¥al

R (sir 6) P(Sir? 0 sir? ¢) (Sir? 6 sir? ¢)
1 0.667 0 0
2 0.690 2.1653 —0.2716
3 0.727 4.9557 —0.4886
4 0.758 8.6551 —0.5136
5 0.784 13.302 —0.5810
6 0.804 19.395 —0.6264
7 0.823 25.487 —0.6718
g 0.836 27.929 —0.6989
9 0.849 36.464 —0.7259
10 0.862 51.090 —0.7530
17 0.876 77.033 —0.7809
14 0.891 102.98 —0.8087
16 0.905 128.92 —0.8366
18 0.912 169.73 —0.8489
20° 0.919 210.53 —0.8611
50 0.968 1244.68 —0.9388
100 0.986 4998.81 —0.9578

The asterisk denotes interpolated values.

Hinch and LeaP® The third column inTable 2lists the
lower bound of the intrinsic viscosity)] (i.€. in the case

P — 00), calculated according to E¢L7), for dilute sus-
pensions of prolate spheroids in dependence of the aspect
ratio. The first three values (f@t between 1 and 3) have
been corrected according to Scheraga’s exact numerical
calculation?® For aspect ratios betwedr 1 and approx-
imately R =50, the following expression can be used

7 = 2.5+ 0.123(R — 1)°9%5, (35)
This simple expression is in formal agreement with Eq.
(31) and has been obtained by fitting thg{, values in
Table 2in the aspect ratio range froRF 1 toR = 20 (with
correlation coefficient 0.998).

Brenner's analysi$? on which the above summary is
essentially based, is probably the most comprehensive, most
precise and most widely acknowledged theoretical investi-
gation in this field. However, when practical applications of
these results are intended, a general note of warning might be
in place. In particular, the attempt to correlate particle shape
(aspect ratio) with suspension rheology (intrinsic viscosity)
is principally complicated by two facts:

First, the intrinsic viscosity value determined as a fit
parameter via the Krieger relatiofi3) (or, the estimate
for it obtained via the Maron—Pierce relati¢f4)) from
experimentally measured relative suspension viscosities is
necessarily subject to statistical and systematic errors. Statis-
tical errors may result from imperfect measurement precision
(instrumental errors, errors due to sedimentation during vis-
cosity measurement and concentration errors due to imper-
fect sample preparation) and the sensitivity of the non-linear
regression fits to small changes in the data. Systematic errors
result from the fact that the measurements are necessarily
performed in the non-dilute range, where interactions play
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a non-negligible role. A correct value for the intrinsic vis- Table 4

cosity can be expected onIy for perfectly deagglomerated Size characteristics (median values of volume-weighted cumulative curves)
. . ? . f wollastonite t WM 45 and HSV 45

(homogeneous) and stable (uniform, i.e. non-sedimentating) 2 ~>-250Ne Ypes an

suspensions. Only in such a case, the intrinsic viscosity valugSize measure WM 45 HSV 45
obtained from the Krieger fit (Eq13)) corresponds to the  Dr- (median) 20.6 29.9
Jeffery—Einstein coefficient] in Eq. (4). As long as attrac- gP (f(“e‘jc'j?”)) 1?)2 49382

. . . . £+ (Median

tive particle interactions cannot be completely excluded, Dy (median) 216 9.1

however, i.e. as long as there is an albeit small tendency of - - - - - -
agglomeration, the intrinsic viscosity value determined from 2P Projected area diametd, laser diffraction equivalent diametdd:
. i . andDg, minimum and maximum Feret diameter, respectively.
experimental measurements, must necessarily be higher than
theoretically predicted, because the tangent sloge=al is
exaggerated. Brenné&rreports, e.g. that in the case of dou-
blets in the form of (two) touching spheres the upper and
lower limit of the intrinsic viscosity of the doublet suspen-
sion is 7)o =3.58 and f]. = 3.02, respectively, in contrast
to the Einstein value ofif] = 2.5 for spheres.

sured by helium pycnometry (AccuPyc 1330, Micrometritics,
Norcross, USA), was 2.980.01 g/cni for both types of
wollastonite powder.

Starch suspensions were prepared for reasons of compar-
ison. Two starch types were applied, corn starch (Gustin,

) T . Dr. Oetker s.r.0., Kladno, Czech Republic) and wheat starch
Second, ithasto be keptin mind that the theoretical eXpres'(unspecified, Amylon a.s., Hatkiiv Brod, Czech Repub-

sions derived for ther(K) dependence hold for a particle lic). The shape of the starch globules is close to spherical,

system with a unique aspect ratio, i.e. all particles, whatever . : . .
A . .~ |.e. the average aspect ratio approximately 1. The median
their size, are assumed to have the same (in mathematical

terms “similar”) shape. For a particle system with a range of size (laser diffraction) is 14.2 and 2Qufn, respectively, the

aspect ratios, it is in fact not clear a priori, what (if any) is density approximately 1.45 g/chn
the appropriate average aspect ratio to be inserted in the the- ) )

oretically derived intrinsic viscosity formulae. Naturally, in -2~ Experimental details

lack of a better-justified alternative, it is reasonable to assume
the arithmetic mean of the individual aspect ratios as a useful
average valué??3

Effective suspension viscosities were measured at room
temperature=25.5+ 0.9°C). In order to slow down sed-
imentation, a 60 wt.% sugar (saccharose) solution was used
as the suspending medium instead of water. According
3. Experimental to the literaturé’? the density of this sugar solution at
this temperature iso=1.284+0.001 g/cr, its viscosity
no=42.8+2.3mPas (cfTable §. The density of our sugar
solution was densimetrically (using a plunger) measured to be
p=1.285 g/cm, the viscosity values measured by rotational

3.1. Material characterization

For the preparation of suspensions, two commercially
available types of wollastonite were used, WM 45 (supplied
by Franz Mandt GmbH, Wunsiedel, Germany) and HSV
45 (supplied by Osthoff-Petrasch GmbH, Norderstedt, Ger- 'aPle 5 N . ,

. . . ... Density and viscosity of a 60 wt.% sugar solution as a function of temperature
many). According to the respective suppliers both exhibit
a subsieve size below 48n. A detailed size and shape 7 p (glen?) o (MPas)
characterization of these two wollastonite types, including 20 1.2865 58.5

a comparison of laser diffraction and image analysis results, 2% 568
: . ) . 21 1.2860 55.2

has been given elsewhet®An earlier laser diffraction study 215 536
with the wollastonite type HSV 45 demonstrated the effect 5» 1.2855 521
of particle orientation in the flow-through cell of laser instru- 22.5 50.6
ments on the interference pattéfit has been shownthatthe 23 1.2850 49.2
interference pattern of this type of wollastonite is highly non- 23- 418
. : : i . 24 1.2845 465
circular when the particles are aligned in the flow directién. Pigs
According to laser diffraction (Analysette 22, Fritsch GmbH, 5 12840 44.0
Idar-Oberstein, Germany), only 77 and 60vol.% for WM 255 42.8
45 and HSV 45, respectively, are <gb. Table 4lists the 26 1.2835 417
size characteristi@d determined by laser diffraction and by 285 L 40.6
microscopic image analysis (Lucia G, Laboratory Imaging ,; 5 2830 ;:f
s.r.o., Prague, Czech Republic). 28 1.2825 37.4
The average aspect ratio determined by image anélysis 285 36.5

is approximately 5 and 16 for WM 45 and HSV 45, respec- 29 1.2820 355
tively, with a large statistical scatter in both cases (relative 29-° Lo81s 33267

standard deviation approximately 50%). The density, mea-
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viscometry (RotoVisco 1 with coaxial cylinder system Z 41, Table 6

ThermoHaake, Karlsruhe, Germany) exhibited an average ofRelative viscosities), of starch suspensions in dependence of the starch
approximately 43 mPas. volume fraction (starch densigy= 1.45 g/cni)

Due to the higher density and viscosity of the sugar Velume Comstarch  Wheat starch  Average of both
solutions sedimentation times are increased by a factor of """ (%) starch types
approximately 50 in the case of wollastonite and by a factor 1 0.97£005  1.03 1.08:0.03
of approximately 120 in the case of starch. Suspensions of 1831 g'g; 2'2&8'8? 12& 8'85
different concentrations (solids volume fractions) were pre- g 1184005 117:0.07 1.18:0.01
pared by mixing, shaking (1200 s, laboratory shaker HS 206 7 1.37+£0.03  1.35: 0.06 1.36+ 0.01
B, IKA Werke, Staufen, Germany) and ultrasonication (60's, 10 1.66+0.04  1.72:0.01  1.69:0.03
ultrasonic processor UP 200S with probe S14, Dr. H|elscher 15 ;-g‘i 8-22 ggi 003); gg: 8-;21
GmbH, Stuttgart, Germany). Viscosities were measured at2 4214010 ASBL008 440L019
a shear rate of 10008. The measuring schedule was 60s 3, Not measured 7.14 714

ramp up, 30s hold at 10005 and 60 s ramp down. For the

. . h Average 4.4 29 3.2
concentrations presented in the next section, all flow curves' . ive arror
were linear (i.e. indicative of Newtonian behavior) and with- (g
out hysteresis (i.e. sedimentation during the measurement
was negligible).

solids volume fractions >20 and >6.25vol.%, respectively,
have to be considered as concentrated.

Figs. 1-3show the measured relative viscositieg
together with error bars (for the wollastonite suspensions)
and the fit curves obtained by non-linear regression via Egs.
(13) (Krieger fit, dashed lines) and4) (Maron—Pierce fit,
full lines). The vertical asymptotics indicate the correspond-
ing critical volume fractiong. obtained by fitting. Since the
data series of both starch suspensions are sufficiently close

4. Results and discussion

In order to assess the influence of Brownian motion, we
calculate the rotaryé&let number according to E(.9)for a
shear rate of 10003. In order to be on the safe side, we cal-
culate the rotary Brownian diffusion coefficient according to
Eq.(20)by assuming a minimum Feret diamet@f 10 umin
the particle volume formula (Eq27)). The resulting Bclet N
numbers at room temperaturg= 25°C) areP=6.2x 10° for fitting in this case.

and 12.4x 10° for WM 45 and HSV 45, respectively, which Tables 8 and QiSt the values' of the f.it.parametera][
clearly corresponds to the case of weak Brownian motion. "d¢c. together with the correlation coefficier@as a mea-

The theoretically predicted intrinsic viscositieg for this sure of the quality of the fit, determined using the Krieger
case are approximately 2.5, 2.8-2.9 and 3.9-4.0 for starch ble 7
e

(R ~ 1), WM45 (R ~ 5)and HSV 4SR ~ 16), respectively Relative viscosities); of wollastonite suspensions in dependence of the

(cf. Table 2"".nd Eq(35)). Using the empirical exprgsspr) Pro-  wollastonite volume fraction (wollastonite density 2.9 g/cn¥)
posed by Kitano et &2 (Eq. (15)), we would predict critical

volume fractions; of 52.8, 47.8 and 34.0% for starch, WM Yolume fraction () WM S RSV 45
45 and HSV 45, respectively. 5 i'ggi 8'13 1.0

Tables 6 and Tist the measured relative viscositigsfor 3 1.0340.20 '
the two types of starch suspensions (corn and wheat) and the 11
two types of wollastonite suspensions. The estimated rela-5 1.18+0.23
tive errors are 3—4% for the starch suspensions and 15— 170/@ 1.27+0.22
for the wollastonite suspensions. Suspensions of HSV 457 1.42£0.19 1.9940.30
with volume fractions >12 vol.% and of WM 45 with volume g 2 484 0.42
fractions >24 vol.% could not be measured in the viscome- 10 1.55+0.21 3.04£0.51
ter (due to blocking and apparent wall slip phenomena, the 11 16.0
flow curve exhibits a steep non-linear uprise followed by 12 1.76+0.23 30.6
unpredictable fluctuations, not to be confused with true shear- 14 ;25; 8'22 Not measurable
thickening behavior, which must be excluded on theoretical ;g 3414 051
grounds). In contrast, starch suspensions were measurableo 4.25+0.65
up to concentrations of approximately 30 vol.%. According 22 5.07+£0.73
to the Doi—Edwards classification of concentrational regimes 24 6.14+0.89

26 Not measurable

(cf. Egs.(7)—-(11)andTable 3, WM 45 and HSV 45 suspen-
sions can be considered as dilute only when the solids volumeAverage 15 17

fraction is <4 and 0.4 vol.% (!), respectively. In terms of this Eoe/";‘“"e error
classification scheme, WM 45 and HSV 45 suspensions with ——

to each other (as expected), average values have been used
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Starch suspensions
35

30
25

20 1 H ®  Com slarch data

© Wheat starch dat |
) -..‘_,,_J/a/i/
L

""" Krieger fit
0 T T T T T

Maron-Pierce fit
Q 10 20 30 40 50 60
Solids volume fraction [ %]

Relative viscosity[1]

Fig. 1. Concentration dependence of the relative viscosity of starch suspensions (filled circles: corn starch; empty circles: wheat starihg; dasvst
fit; full line: Maron—Pierce fit (the corresponding critical volume fractigsobtained by fitting are indicated as vertical asymptotics).

Wollastonite WM 45

35

30 1

25 1

20 A

151

101

Relative viscosity [1]

0 : : ; : :
o} 10 20 30 40 50 60

Solids volume fraction [%)]

Fig. 2. Concentration dependence of the relative viscosity of suspensions with wollastonite WM 45; measured data (empty squares), Kriegkliri\dashe
Maron—Pierce fit (full line); the corresponding critical volume fractigg®btained by fitting are indicated as vertical asymptotics.

Wollastonite HSV 45

Relative viscosity [1]

T T T T

20 30 40 50 60
Solids volume fraction [ %]

Fig. 3. Concentration dependence of the relative viscosity of suspensions with wollastonite HSV 45; measured data (empty squares), Kriegklirfit{dash
Maron-Pierce fit (full line); the corresponding critical volume fractigg®btained by fitting are indicated as vertical asymptotics.
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Table 8

Fit parameterg. and [y] (and correlation coefficient§) for the concen-
tration dependence of the relative viscosity of suspensions with different
materials obtained with the Krieger relation

Material dc (%) [ C

Corn starch 76.0 4.72 0.994
Wheat starch 61.3 4.77 0.999
Average of both starch types 53.1 4.44 0.999
WM 45 36.3 4.70 0.992
HSV 45 13.0 10.2 0.975
Table 9

Fit parameterg, estimates for the intrinsic viscosity]kstand correlation
coefficientsC for the concentration dependence of the relative viscosity of
suspensions with different materials obtained with the Maron—Pierce relation

Material ¢c (%) [M]est c

Corn starch 48.5 4.12 0.992
Wheat starch 47.7 4.19 0.997
Average of both starch types 47.9 4.18 0.999
WM 45 40.1 4.99 0.991
HSV 45 14.7 13.6 0.952

relation (Eq.(13)) and the Maron—Pierce relation (44)),
respectively. Mere visual inspection shows (and the correla-
tion coefficients confirm) that the fits are excellent for starch
and WM 45 suspensions, but relatively bad for HSV 45 sus-
pensions, which is related to the high uncertainty of the
values for 11 and 12 vol.% HSV 45 suspensions. Notwith-
standing these minor details, however, it is evident that all
experimentally determined intrinsic viscosity values are sig-
nificantly higher than the theoretically predicted ones. In
particular, the measured intrinsic viscosity of starch sus-

W. Pabst et al. / Journal of the European Ceramic Society 26 (2006) 149—160

(non-dilute range) must be minimized. In principle, this can
be achieved by optimal deflocculation and stabilization of
the suspension with the help of an appropriate dispersant. In
our case, however, the situation is complicated by the pres-
ence of the organic component (saccharose), which makes
possible cross-interactions hard to predict. Apart from inter-
action effects, which cause the measured intrinsic viscosities
to be too high, it may also argued that the predicted intrin-
sic viscosities are too low because of the fact that the aspect
ratio used for prediction purposes here is only an average
aspect ratio and it is well thinkable that the actual intrinsic
viscosity is determined mainly by the highest aspect ratios
occurring in the system. Interestingly, the intrinsic viscos-
ity values experimentally determined in this work for starch
and the low-aspect-ratio wollastonite WM 45 (range 4.2-5.0)
are remarkably close to the intrinsic viscosity value 4.5 rec-
ommended by the Banskij formula (Eq.(6)). This finding
seems to be in agreement with long-term experimental expe-
rience of other author€:11

Similar conclusions can be drawn with respect to the crit-
ical volume fractions determined in this work. While for sys-
tems with isometric particles (starch suspensions), the critical
volume fraction determined is approximately 53% (according
to the Krieger fit) or 48% (according to the Maron—Pierce fit),
in satisfactory agreement with the prediction via the empir-
ical formula of Kitano et al. (Eq(15)), ¢ values for the
wollastonite suspensions are quite different from Kitano’s
predictions (cf.Fig. 4). Again, this is indicative of interac-
tion (agglomeration) and, possibly, an increased influence of
high-aspect-ratio particles in the system. By linear fitting the
values (Maron—Pierce fit parameters)Hiy. 4, we obtain a

pensions is almost the same as that of the IOW'"“Spem'raﬂOKitano-type expression with the following numerical coeffi-

wollastonite WM 45. This might be a consequence of the
fact that in real systems attractive interactions of electrostatic
origin (causing particle agglomeration in suspensions) can-

ents

$c = 0.51— 0.0223R. (36)

not be excluded to the necessary degree. It is clear that, in

order to obtain the correct value of intrinsic viscosity in the
dilute limit, the effective viscosities at higher concentrations

0.6

Note that, compared to E{L5), especially the slope of the
regression lineisincreased, i.e. in the presence of interactions

0.51

0.4

0.31

0.2 1

Critical volume fraction [1]

0.1

O Kitano data
= = = Kitanofil

B Ouwdata
Our fit

15
Aspect ratio

10

20

25 30 35

(1]

Fig. 4. Dependence of the critical volume fractigg(obtained by fitting with the Maron—Pierce relation) on the average patrticle aspe®;réiied squares
and full line are data and linear regression line, respectively, of this work; empty squares and dashed line are data and linear regressiativilg, oéspe

Kitano et al??
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ablility occurs) is much lower for particles with a comparable (Grant No. MSM 223100002). It is based on fundamental

degree of anisometry. research performed by W.P. within the project “Mechanics
and thermomechanics of disperse systems, porous materials
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This paper is intended to serve as a guideline for future
experimental research on the rheology of fiber suspensions.
In particular, we have given a very simple relation (E2p))

for the dependence of the intrinsic viscosity on aspect ratio, References

which approximates the highly sophisticated Brenner relation
(17) for many practical situations with sufficient precision.
This approximate relation, formally the “non-Brownian”
counterpart of the widely used Kuhn—Kuhn relati@1) for 2.
low-aspect-ratio Brownian particles, might be appealing to
other investigators and is to enable easy comparison of theo- 3.
retical predictions and experimental findings.
. . . .4

For the special case of wollastonite suspensions, the find-
ings of this work clearly demonstrate that it is not possible 5
to predict the intrinsic viscosity of these suspensions via
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