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Abstract

The effective viscosity of short-fiber suspensions is studied from a theoretical and experimental point of view. The theory of dilute suspensions
with elongated particles is briefly summarized and explicit formulae for the dependence of the intrinsic viscosity on the particle shape
(aspect ratio) are given in a form that should be useful for practical purposes. Concentration regimes, the influence of Brownian motion and
sedimentation kinetics are mentioned. The effective viscosity of suspensions of two polydisperse wollastonites with significantly different
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verage aspect ratios (approximately 5 and 16, respectively) is measured in dependence of the solids volume fraction and fitted wit
odels (Krieger and Maron–Pierce relations). It is shown that the intrinsic viscosity determined is higher than theoretically pre

he Brenner formula, while the critical volume fraction is lower than predicted by the empirical Kitano relation. Possible reasons
iscrepancies, common to most real polydisperse systems, are discussed.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Particles with anisometric shape are ubiquitous in ceramic
echnology and materials processing, in general. When prop-
rly oriented (e.g. by flow processes) materials with more or

ess anisotropic microstructures can be prepared. In particu-
ar, elongated particles (e.g. short fibers or whiskers) can be
sed to increase the strength and fracture toughness of com-
osites (e.g. ceramic matrix composites). In the case of (a
ertain degree of) preferred orientation (e.g. flow-induced),
hort-fiber composites are transversally isotropic materials.
herefore, the study of the rheology of fiber suspensions,

n particular, their effective viscosity and its concentration
ependence, is of general interest in ceramic technology and

echnology today. There is, however, a paradoxical situa-
ion with respect to fiber suspensions: a considerable amount
f theoretical work has been done during the 20th century
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(including extensive work on the relationship between
ticle shape and rheology) but most serious results are
hidden in the original literature and have not yet found t
way into monographs and textbooks. Therefore, many o
results achieved by theoreticians in the field are not
ily accessible to the majority of skillful experimenters.
this paper, we propose, using two wollastonite system
paradigmatic examples, a systematic way to confront w
founded theoretical results with results of experimental m
surements on real systems. In particular, we give a very si
relation for the dependence of the intrinsic viscosity on as
ratio (Eq.(35)), which approximates the highly sophistica
Brenner relation (Eq.(17)) for many practical situations wi
sufficient precision. We assume that this approximate
tion, formally the “non-Brownian” counterpart of the wide
used Kuhn–Kuhn relation for low-aspect-ratio Brownian
ticles (Eq. (31)), will be appealing to other experimen
investigators.

Wollastonite, the material chosen as a paradigmatic e
ple for the present study, is an inosilicate (single-chain
955-2219/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jeurceramsoc.2004.10.016
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cate, CaSiO3). As a result of the internal structure and pre-
ferred cleavage along the directions [1 0 0] and [0 0 1], the
usual external shape of wollastonite particles is that of elon-
gated needles. According to the recent literature,1 the exper-
imentally measured density of both triclinic and monoclinic
wollastonite is between 2.86 and 3.09 g/cm3, although the
calculated theoretical value is around 2.90 g/cm3 for both and
the JCPDS data sheets2 list values of 2.91–2.92 g/cm3. Due
to its elongated, needle-like shape wollastonite can be used in
ceramic technology to increase the green strength of as-dried
ceramic products, which need further manipulation in a pro-
duction line. This can be especially advantageous for large
ceramic parts in those cases where a certain CaO content can
be tolerated in the raw material mixture (e.g. in sanitary ware
production). Elongated particles, however, lead to an increase
in the viscosity of ceramic suspensions that exceeds the usual
increase encountered for isometric particles. This is usually a
disadvantage in ceramic processing, although in other areas
of application this large viscosity-increasing effect of elon-
gated particles might be used to achieve high viscosities with
relatively low solids loadings (volume fractions).

The practical objective of this work is two-fold: first, to
characterize the viscosity increase with volume fraction for
polydisperse wollastonite suspensions containing particles
with different average shape (average aspect ratio). Second, to
compare the measured results with existing theoretical mod-
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Note, however, that the assumption of a dependence exclu-
sively on φ is only justifiable on pragmatic grounds, i.e.
when higher-order microstructural information is lacking (cf.
the discussions in3,4 and the references given therein). Note
further, that in assuming the existence of a unique (i.e. not
shear rate-dependent) shear viscosity, one implicitly assumes
purely viscous behavior (i.e. no viscoelastic effects) and New-
tonian (linear) behavior of the whole suspension (and not only
of the suspending medium). In the dilute limit, i.e. for vol-
ume fractionsφ → 0, the effective viscosityη of suspensions
with rigid, spherical particles is usually assumed to obey the
Einstein relation5

η = η0(1 + 2.5φ). (1)

In this equation,φ is the solids volume fraction,η denotes
the effective suspension viscosity andη0 the viscosity of the
suspending medium (pure liquid). In order to simplify nota-
tion in the following text, we introduce the relative viscosity
ηr

ηr ≡ η

η0
, (2)

and the so-called intrinsic viscosity [η]

[η] ≡ lim
φ→0

ηr − 1
. (3)

U for-
m s, i.e.

η

J lip-
s t
t ct
r n.

alue
o en-
s sally
a etical
a be
m

η

a

η

p the
o en-
t lder
C ate
t
( , the
d
2 etric
p

ls and empirical relations and discuss the applicability o
atter for prediction purposes.

Section2 introduces the basic quantities (effective, r
ive and intrinsic viscosity) and briefly summarizes the the
f dilute suspensions with elongated particles. Explicit
ulae for the dependence of the intrinsic viscosity on
article shape (aspect ratio) are given in a form that sh
e useful in practice. Concentration regimes, the influ
f Brownian motion and sedimentation kinetics are also
ussed for the case of suspensions with elongated pa
fiber suspensions). Section3 gives material characteristi
nd experimental details concerning the wollastonite sus
ions investigated in this work. Section4 presents measur
ata and evaluated results, including the fit parameters d
ined. Results obtained on the basis of experimentally

ured data are discussed and compared to the predictio

. Theoretical

.1. Effective, relative and intrinsic viscosity

Effective properties are the macroscopic (i.e. overa
arge-scale), properties of multiphase materials. In gen
hey are dependent on the constituent (i.e. phase) pr
ies and the microstructure of the material. For two-ph
olid–liquid mixtures with matrix-inclusion type microstru
ure (suspensions), an effective shear viscosityη (simply
alled “effective viscosity” in the sequel) can be defined
ssumed to be a function of the solids volume fractioφ.
φ

sing the intrinsic viscosity, the Einstein relation can be
ally generalized to suspensions of anisometric particle

r = 1 + [η]φ. (4)

effery, in a rigorous treatment of the motion of a rigid el
oids and spheroids with a certain aspect ratio,6 was the firs
o calculate values for [η] as a function of the particle aspe
atio. Therefore, we call Eq.(4) the Jeffery–Einstein relatio

At this point, it should be emphasized that Einstein’s v
f 2.5 for the intrinsic viscosity of dilute sphere susp
ions, though widely assumed to be valid, is not univer
cknowledged and has been questioned from the theor
s well as from the experimental side. Mention should
ade of Happel’s alternative theoretical result7,8

= η0(1 + 5.5φ), (5)

nd of the so-called Bačinskij relation9–11

= η0(1 + 4.5φ), (6)

robably based on empirical findings. Unfortunately,
riginal Russian source of this relation could not be id

ified (ante 1952). It occurs, however, in some of the o
zech literature9,10 and is reported to be more appropri

han the Einstein relation(1). Note that both Eqs.(5) and
6) are meant for spherical or isometric particles. Thus
eviation of the intrinsic viscosity [η] from Einstein’s value
.5 in these two relations has nothing to do with anisom
article shape.
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2.2. Model shapes and concentration regimes for
suspensions of elongated particles

Isometric particles have approximately the same size in
all directions. Apart from the ideal case of spheres, isometric
are, e.g. all regular polyhedra (tetrahedra, cubes, octahe-
dra, dodecahedra and icosahedra) and many other facetted
and irregular particles. Anisometric particles have at least
one distinguished direction along which their size is signifi-
cantly larger or smaller than perpendicular to it. The simplest
model shapes for approximating real anisometric particles
are rotational ellipsoids (i.e. prolate and oblate spheroids) and
circular cylinders (i.e. rods and discs or fibers and platelets).
In both cases shape can be quantified via a single number,
the aspect ratio. It is evident that the first is the most natural
from a principal point of view, because it includes the sphere
as a special case. Moreover, only for spheroids the hydrody-
namic problem of particle motion in a viscous fluid can be
solved exactly. This is the reason why spheroids are the pre-
ferred model shapes, e.g. in the rheology of fiber and platelet
suspensions.12–16 Defining the aspect ratioR as the ratio
between the long and short axes or half-axes (height/diameter
ratio in the case of cylinders), one can distinguish prolate
(elongated) particles withR > 1 and oblate (flaky) particles
with R < 1.

Of course, for real particle systems (powders), which are
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fiber can freely rotate in arbitrary directions. According to
some authors,26,27this estimate is too strictly limiting. Instead
of the volume fraction occurring in Eq.(7), they propose a
value larger by a factor of 24 for the transition from dilute
to semi-dilute. In the semi-dilute regime (where the particles
are not free to rotate end-over-end, but are still sufficiently
far apart for the mutual hydrodynamic drag exerted by neigh-
boring particles to be small), it is necessary to distinguish the
case of randomly oriented fibers, for which

1

R2 < φ <
1

R
, (8)

and the case of preferentially oriented (aligned) fibers, for
which

1

R2 < φ < 1. (9)

In the theory of fiber suspensions the isotropic concentrated
regime (where the fiber orientation is random) is defined by
the condition13,14,25

1

R
< φ, (10)

while the maximum concentration up to which the sus-
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sually polydisperse with respect to size and shape, the
ination of the aspect ratio is not an easy task and nee

ven be useful in all cases, since shape (quantified vi
spect ratio) need not be (and in general is not) size-inva

n other words, similar to the size, also the shape (as
atio) exhibits a distribution, e.g. in the case of oblate p
les (discs) certain shape information, related to the a
atio, can be extracted from the comparison of sediment
nd laser diffraction data,17–21but the interpretation of the
esults is principally complicated by the fact that, in ad
ion to the size distribution, there is a superimposed s
istribution in a real particle system. Nevertheless, in ce
ases (viz. when the shape distribution is not correlate
he size distribution, i.e. for each size class the shape d
ution is approximately the same), an average aspect raR̄

usually the arithmetic mean of individual aspect ratios o
artial size class averages) can be calculated for the s
s a whole.22,23

For suspensions with elongated particles (modele
ong prolate spheroids or long slender rods), in the
owing simply called “fiber suspensions”, it is useful
istinguish three concentration regimes: dilute, semi-d
nd concentrated.13,14,24–26According to the Doi–Edward
odel for monodisperse fiber suspensions,24,25 the dilute

egime should be characterized by the condition

<
1

R2 , (7)

hich is derived from the condition that the mean dista
etween fibers is larger than half of the fiber length, i.e
ensions can remain isotropic is (according to the Ons
heory)26

<
3.3

R
. (11)

igher concentrations can only be achieved when isot
s abandoned (nematic state).Table 1lists the concentratio
egimes for monodisperse (with respect to size and sh
article systems according to Eqs.(7), (10) and (11)in depen
ence of the particle aspect ratioR. Evidently, Eq.(10)canno
pply to isometric particles, and Eqs.(10) and (11)are use

ess for this case. For a suspension of monodisperse sp
.g. the critical volume fractionφc is approximately 64%
cf.4,28–30). This value (much lower than 100%, as predic
y Eqs.(7) and (10)) cannot be exceeded unless the sus
ion looses its ability to flow (blocking phenomenon).
uch a system, volume fractions higher than approxim
2% (corresponding to primitive cubic packing) should

ainly be considered as being in the concentrated reg
ince the particles are in direct steric contact (exclu
olume interactions). The densest packing of monodisp
pheres (hexagonal closest packing (hcp) or face-cen
ubic (fcc)) corresponds to a volume fraction of appr
ately 74%, while the mentioned approximate value of 6

orresponds to random close packing (rcp). In the ca
onodisperse fibers, the densest packing can be as h
1%, but usually no estimates of the lower bound ca
iven. In the case of real systems, which are usually p
isperse, the critical volume fraction has to be determ
mpirically.
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Table 1
Concentration regimes (volume fraction limits in %) of monodisperse (with respect to size and shape) fiber suspensions in dependence of the aspect ratio,
according to Eqs.(7), (10) and (11)

Aspect ratio (R) Dilute for
φ < 1/R2

Transition from semi-dilute to isotropic
concentrated atφ < 1/R

Maximum concentration of isotropic
suspensions atφ < 3.3/R

1 100 100 (330)
2 25 50 (165)
3 11 33.3 (110)
4 6.25 25 82.5
5 4 20 66
10 1 10 33
16 0.39 6.25 20.6
25 0.16 4 13.2
50 0.04 2 6.6
100 0.01 1 3.3
1000 0.0001 0.1 0.33
1000000 10−10 0.0001 0.00033

2.3. Dependence of the relative viscosity on the solids
volume fraction

In a first approximation (cf. the discussion earlier), the
relative viscosity of a suspensionηr can be assumed to be a
function of the solids volume fractionφ, i.e.

ηr = ηr(φ). (12)

There have been numerous attempts to find expressions
that extending the validity of the Jeffery–Einstein relation
(Eq. (4)) to non-dilute systems (cf.4 and the references
cited therein). Both exponential (Mooney-type) and power-
law (Krieger-type) relations are popular, although the latter
exhibit a subtle advantage from the theoretical point of view.4

The Krieger relation31 is

ηr =
(

1 − φ

φc

)−[η]φc

. (13)

As the case may be, this relation can be considered as a model
equation for the prediction of the effective viscosity of sus-
pensions with monodisperse spheres (in this case set [η] = 2.5
andφ = 0.64) or as a fit equation with one (φc) or two (φc
and [η]) adjustable fit parameters. Note that the Krieger rela-
tion exhibits correct limit behavior, i.e. the relative viscosity
relation reduces to the Jeffery–Einstein relation (Eq.(4)) for
φ n
a
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practice is to be sought in the fact that for monodisperse
spheres [η]φ ≈ 1.85 which is for practical purposes suffi-
ciently close to the Maron–Pierce value of 2. With growing
particle anisometry, on the other hand, the expected decrease
in the critical volume fractionφc is in part compensated by an
increase in the intrinsic viscosity [η]. With respect to this fact,
the value 2/φc determined from fitting with the Maron–Pierce
relation (Eq.(14)), can be considered as a rough estimate for
the intrinsic viscosity [η]est.

Kitano et al.22 used the Maron–Pierce relation for data
fitting. Based on experiments with polymer melts containing
different volume fractions of fibers with different average
aspect ratiōR (ranging from 6 to 27), they found an approxi-
mately linear relation betweenφc and the average aspect ratio
R̄

φc = 0.54− 0.0125R̄, (15)

sometimes reported with other coefficients, viz.φc = 0.53−
0.013R̄ (cf.33,34). Although Eq.(15) is often used and some-
times recommended for prediction purposes, when a rough
estimate of the effective viscosity of fiber suspensions is
required and an alternative is not in sight, it has to be kept
in mind that it is a purely empirical finding. In particular, the
numerical values can be subject to change.

2
a

the
b ion.
T than
o that
t ticle
s

[

→ 0 and goes to infinity,ηr → ∞, as the volume fractio
pproachesφ → �c, as required.

Another useful relation is the Maron–Pierce relation32

r =
(

1 − φ

φc

)−2

, (14)

hich can be considered as a special case of the Kriege
ion, obtained by setting [η]φc = 2. The Maron–Pierce relatio
an be used for fitting purposes instead of the Krieger rel
hen a two-parameter fit is to be avoided but the intrinsic
osity [η] is not known. It is widely used and recommend
n the literature on fiber suspensions.22,33–35 It seems tha
he reason for the success of the Maron–Pierce relati
.4. Dependence of the intrinsic viscosity on the particle
spect ratio

The intrinsic viscosity is a parameter characterizing
ehavior of non-interacting particles in a dilute suspens
hus, it is rather a characteristic of the particle system
f the suspension as a whole. From this, it is plausible

he intrinsic viscosity depends in the first instance on par
hape, i.e. the particle aspect ratioR

η] = [η](R). (16)
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Note that the intrinsic viscosity is in general bounded from
below by the inequality12,36

[η] > 1.

According to Brenner,12 the intrinsic viscosity for simple
shear flow of a suspension with axisymmetric particles (pos-
sessing fore-aft symmetry) is given by the expression

[η] = 5Q1 − 15

4
Q2〈sin2 θ〉 − 5

4B
(3Q2 + 4Q4)

× 〈sin2 θ cos 2φ〉 + 15

2BP
(3Q2 + 4Q3)〈sin2 θ sin 2φ〉.

(17)

In this expression

B = 5N

3Kr
(18)

is a dimensionless parameter and

P = γ

Dr
(19)

is the rotary Ṕeclet number, withγ being the shear rate and
the rotary Brownian diffusion coefficientDr given by the
Stokes–Einstein equation37
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and

Q4 = 1

5α3

[
2Rα3

(R2 + 1)α4
− 1

]
. (23d)

In these expressions, theα’s are defined as

α1 = 2

R2 − 1
(βR2 − 1), (24a)

α2 = R2

R2 − 1
(1 − β), (24b)

α3 = R2

4(R2 − 1)2
(3β + 2R2 − 5), (24c)

α4 = R

(R2 − 1)2
(R2 + 2 − 3βR2), (24d)

α5 = R2

4(R2 − 1)2
(2R2 + 1 − (4R2 − 1)β), (24e)

α6 = R2

(R2 − 1)2
[(2R2 + 1)β − 3], (24f)

where

β = arccoshR√
2

, (25)
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n
and
r = kT

6Vη0Kr
, (20)

herek is the Boltzmann constant,T the absolute temper
ure,V the particle volume andη0 the viscosity of the sus
ending medium. The material constantsN andKr (connected

o the rotation of the axisymmetric particle about a transv
xis) are dependent on the model shape chosen and the
atio (true axis ratio, particle axis ratio)R = a/b, wherea is the
olar radius (for prolate shapes half of the length, for ob
hapes half of the thickness) andb the equatorial radius (fo
rolate shapes half of the thickness, for oblate shapes h

he diameter). For spheroids, in general,

r = 2(R2 + 1)

3(R2α1 + α2)
, (21)

nd

= 2(R2 − 1)

5(R2α1 + α2)
. (22)

oreover,

1 = 1

5α3
, (23a)

2 = 2

15α3

(
1 − α5

α6

)
, (23b)

3 = 1

5α3

[
R(α1 + α2)

R2α1 + α2

(
α3

α4

)
− 1

]
, (23c)
ct

R R − 1

or prolate spheroids (R > 1). As a consequence,

= R2 − 1

R2 + 1
. (26)

he volume of a prolate spheroid is

= 4π

3
ab2 = 4π

3
Rb3. (27)

or prolate spheroids, like for all axisymmetric particles w
ore-aft symmetry, the material parametersQ1 throughQ4,
ogether withKr, N, andB completely determine the beha
or of the suspension in arbitrary flow processes.12 Only five
f these parameters are independent and all material p
ters are uniquely defined by the aspect ratioR. Based on

he knowledge ofKr and the particle size (volumeV), the
otary Ṕeclet number can be estimated, cf. Eq.(19), in order
o assess the influence of Brownian motion. It is com
ractice to distinguish three regimes:12

Dominant Brownian motion:

P 	 1. (28)

In this case (“zero shear rate limit”), the intrinsic visco
[η]0 is maximal and can be considered as an upper b
of the intrinsic viscosity. Eq.(17)can be approximated

[η]0 = 5Q1 − Q2 + 2Q3. (29)

For high-aspect-ratio spheroids (R 
 1), this equatio
reduces to the well-known approximate result of Kuhn
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Table 2
Upper bound of the intrinsic viscosity [η]0 (P = 0), calculated according to
Eq. (29), and lower bound of the intrinsic viscosity [η]∞ (P → ∞), calcu-
lated according to Eq.(17), for dilute suspensions of prolate spheroids in
dependence of the aspect ratio12

R [η]0 [η]∞
1 2.5 2.5
2 2.91 2.57
3 3.68 2.68
4 4.66 2.8
5 5.81 2.92
6 7.1 3.06
7 8.53 3.14
8 10.1 3.27
9 11.8 3.38

10 13.6 3.44
12 17.7 3.69
14 22.2 3.88
16 27.2 3.93
18 32.6 4.17
20 38.5 4.37
50 176.8 7.68

100 593.7 20.4

First three values in the third column (forR between 1 and 3) corrected
according to Scheraga’s exact numerical calculation.40

Kuhn38

[η]0 = R2

15

[
3

ln 2R − 0.5
+ 1

ln 2R − 1.5

]
+ 8

5
, (30)

while for low-aspect-ratio spheroids (R < 15), the approx-
imate expression

[η]0 = 2.5 + 0.408(R − 1)1.508, (31)

can be used.13The second column inTable 2lists this upper
bound of the intrinsic viscosity [η]0 (i.e. in the case,P = 0),
calculated according to Eq.(29), for dilute suspensions of
prolate spheroids in dependence of the aspect ratio.12

• Intermediate Brownian motion:

R3 + R−3 
 P 
 1. (32)

Although in this case the goniometric factors in Eq.(17)
adopt very simple expressions,39 an explicit calculation of
the intrinsic viscosity in the intermediate regime is rather
intricate.12 However, since intermediate Brownian motion
necessarily requires very large aspect ratios (R 
 1) for
prolate spheroids, the approximation12

[η]i = 2 + λ
R2

ln R
P−1/3, (33)

valid for long thin prolate spheroids (withλ between 0.2
n.

•

Eq.
tio,
of

Table 3
Goniometric factors to be inserted in Eq.(17) in dependence of the aspect
ratio, according to Brenner,12 based on the results of Hinch and Leal39

R 〈sin2 θ〉 P〈sin2 θ sin2 φ〉 〈sin2 θ sin2 φ〉
1 0.667 0 0
2 0.690 2.1653 −0.2716
3 0.727 4.9557 −0.4886
4 0.758 8.6551 −0.5136
5 0.784 13.302 −0.5810
6* 0.804 19.395 −0.6264
7 0.823 25.487 −0.6718
8* 0.836 27.929 −0.6989
9* 0.849 36.464 −0.7259

10 0.862 51.090 −0.7530
12* 0.876 77.033 −0.7809
14* 0.891 102.98 −0.8087
16 0.905 128.92 −0.8366
18* 0.912 169.73 −0.8489
20* 0.919 210.53 −0.8611
50 0.968 1244.68 −0.9388

100 0.986 4998.81 −0.9578

The asterisk denotes interpolated values.

Hinch and Leal.39 The third column inTable 2lists the
lower bound of the intrinsic viscosity [η]∞ (i.e. in the case
P → ∞), calculated according to Eq.(17), for dilute sus-
pensions of prolate spheroids in dependence of the aspect
ratio. The first three values (forR between 1 and 3) have
been corrected according to Scheraga’s exact numerical
calculation.40 For aspect ratios betweenR = 1 and approx-
imatelyR = 50, the following expression can be used

[η]∞ = 2.5 + 0.123(R − 1)0.925. (35)

This simple expression is in formal agreement with Eq.
(31) and has been obtained by fitting the [η]∞ values in
Table 2in the aspect ratio range fromR = 1 toR = 20 (with
correlation coefficient 0.998).

Brenner’s analysis,12 on which the above summary is
essentially based, is probably the most comprehensive, most
precise and most widely acknowledged theoretical investi-
gation in this field. However, when practical applications of
these results are intended, a general note of warning might be
in place. In particular, the attempt to correlate particle shape
(aspect ratio) with suspension rheology (intrinsic viscosity)
is principally complicated by two facts:

First, the intrinsic viscosity value determined as a fit
parameter via the Krieger relation(13) (or, the estimate
f
e es is
n tatis-
t ision
( vis-
c per-
f near
r errors
r sarily
p play
and 0.5), might be a used as an estimate in this regio
Weak Brownian motion:

P 
 1 and P 
 R3 + R−3. (34)

In this case, the goniometric factors to be inserted in
(17)are given inTable 3in dependence of the aspect ra
according to Brenner,12 based on the asymptotic results
or it obtained via the Maron–Pierce relation(14)) from
xperimentally measured relative suspension viscositi
ecessarily subject to statistical and systematic errors. S

ical errors may result from imperfect measurement prec
instrumental errors, errors due to sedimentation during
osity measurement and concentration errors due to im
ect sample preparation) and the sensitivity of the non-li
egression fits to small changes in the data. Systematic
esult from the fact that the measurements are neces
erformed in the non-dilute range, where interactions
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a non-negligible role. A correct value for the intrinsic vis-
cosity can be expected only for perfectly deagglomerated
(homogeneous) and stable (uniform, i.e. non-sedimentating)
suspensions. Only in such a case, the intrinsic viscosity value
obtained from the Krieger fit (Eq.(13)) corresponds to the
Jeffery–Einstein coefficient [η] in Eq. (4). As long as attrac-
tive particle interactions cannot be completely excluded,
however, i.e. as long as there is an albeit small tendency of
agglomeration, the intrinsic viscosity value determined from
experimental measurements, must necessarily be higher than
theoretically predicted, because the tangent slope atφ = 0 is
exaggerated. Brenner12 reports, e.g. that in the case of dou-
blets in the form of (two) touching spheres the upper and
lower limit of the intrinsic viscosity of the doublet suspen-
sion is [η]0 = 3.58 and [η]∞ = 3.02, respectively, in contrast
to the Einstein value of [η] = 2.5 for spheres.

Second, it has to be kept in mind that the theoretical expres-
sions derived for the [η](R) dependence hold for a particle
system with a unique aspect ratio, i.e. all particles, whatever
their size, are assumed to have the same (in mathematical
terms “similar”) shape. For a particle system with a range of
aspect ratios, it is in fact not clear a priori, what (if any) is
the appropriate average aspect ratio to be inserted in the the-
oretically derived intrinsic viscosity formulae. Naturally, in
lack of a better-justified alternative, it is reasonable to assume
the arithmetic mean of the individual aspect ratios as a useful
a
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Table 4
Size characteristics (median values of volume-weighted cumulative curves)
of wollastonite types WM 45 and HSV 45

Size measure WM 45 HSV 45

DF− (median) 20.6 29.9
DP (median) 45 98
DF+ (median) 103 432
DL (median) 21.6 29.1

DP, projected area diameter;DL, laser diffraction equivalent diameter;DF−
andDF+, minimum and maximum Feret diameter, respectively.

sured by helium pycnometry (AccuPyc 1330, Micrometritics,
Norcross, USA), was 2.90± 0.01 g/cm3 for both types of
wollastonite powder.

Starch suspensions were prepared for reasons of compar-
ison. Two starch types were applied, corn starch (Gustin,
Dr. Oetker s.r.o., Kladno, Czech Republic) and wheat starch
(unspecified, Amylon a.s., Havličkův Brod, Czech Repub-
lic). The shape of the starch globules is close to spherical,
i.e. the average aspect ratio approximately 1. The median
size (laser diffraction) is 14.2 and 20.0�m, respectively, the
density approximately 1.45 g/cm3.

3.2. Experimental details

Effective suspension viscosities were measured at room
temperature (T = 25.5± 0.9◦C). In order to slow down sed-
imentation, a 60 wt.% sugar (saccharose) solution was used
as the suspending medium instead of water. According
to the literature,42 the density of this sugar solution at
this temperature isρ = 1.284± 0.001 g/cm3, its viscosity
η0 = 42.8± 2.3 mPa s (cf.Table 5). The density of our sugar
solution was densimetrically (using a plunger) measured to be
ρ = 1.285 g/cm3, the viscosity values measured by rotational

Table 5
Density and viscosity of a 60 wt.% sugar solution as a function of temperature

T )

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3

verage value.22,23

. Experimental

.1. Material characterization

For the preparation of suspensions, two commerc
vailable types of wollastonite were used, WM 45 (supp
y Franz Mandt GmbH, Wunsiedel, Germany) and H
5 (supplied by Osthoff-Petrasch GmbH, Norderstedt,
any). According to the respective suppliers both ex
subsieve size below 45�m. A detailed size and sha

haracterization of these two wollastonite types, inclu
comparison of laser diffraction and image analysis res
as been given elsewhere.23 An earlier laser diffraction stud
ith the wollastonite type HSV 45 demonstrated the e
f particle orientation in the flow-through cell of laser inst
ents on the interference pattern.41 It has been shown that t

nterference pattern of this type of wollastonite is highly n
ircular when the particles are aligned in the flow directio41

ccording to laser diffraction (Analysette 22, Fritsch Gm
dar-Oberstein, Germany), only 77 and 60 vol.% for W
5 and HSV 45, respectively, are <45�m. Table 4lists the
ize characteristics23 determined by laser diffraction and
icroscopic image analysis (Lucia G, Laboratory Imag

.r.o., Prague, Czech Republic).
The average aspect ratio determined by image analy23

s approximately 5 and 16 for WM 45 and HSV 45, resp
ively, with a large statistical scatter in both cases (rela
tandard deviation approximately 50%). The density, m
(◦C) ρ (g/cm3) η0 (mPa s

0 1.2865 58.5
0.5 56.8
1 1.2860 55.2
1.5 53.6
2 1.2855 52.1
2.5 50.6
3 1.2850 49.2
3.5 47.8
4 1.2845 46.5
4.5 45.2
5 1.2840 44.0
5.5 42.8
6 1.2835 41.7
6.5 40.6
7 1.2830 39.5
7.5 38.4
8 1.2825 37.4
8.5 36.5
9 1.2820 35.5
9.5 34.6
0 1.2815 33.7
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viscometry (RotoVisco 1 with coaxial cylinder system Z 41,
ThermoHaake, Karlsruhe, Germany) exhibited an average of
approximately 43 mPa s.

Due to the higher density and viscosity of the sugar
solutions sedimentation times are increased by a factor of
approximately 50 in the case of wollastonite and by a factor
of approximately 120 in the case of starch. Suspensions of
different concentrations (solids volume fractions) were pre-
pared by mixing, shaking (1200 s, laboratory shaker HS 206
B, IKA Werke, Staufen, Germany) and ultrasonication (60 s,
ultrasonic processor UP 200S with probe S14, Dr. Hielscher
GmbH, Stuttgart, Germany). Viscosities were measured at
a shear rate of 1000 s−1. The measuring schedule was 60 s
ramp up, 30 s hold at 1000 s−1 and 60 s ramp down. For the
concentrations presented in the next section, all flow curves
were linear (i.e. indicative of Newtonian behavior) and with-
out hysteresis (i.e. sedimentation during the measurement
was negligible).

4. Results and discussion

In order to assess the influence of Brownian motion, we
calculate the rotary Ṕeclet number according to Eq.(19)for a
shear rate of 1000 s−1. In order to be on the safe side, we cal-
culate the rotary Brownian diffusion coefficient according to
E
t
n
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Table 6
Relative viscositiesηr of starch suspensions in dependence of the starch
volume fraction (starch densityρ = 1.45 g/cm3)

Volume
fraction (%)

Corn starch Wheat starch Average of both
starch types

1 0.97± 0.05 1.03 1.00± 0.03
2 1.02± 0.07 0.99± 0.05 1.01± 0.02
3 1.07± 0.03 1.12± 0.01 1.10± 0.03
5 1.18± 0.05 1.17± 0.07 1.18± 0.01
7 1.37± 0.03 1.35± 0.06 1.36± 0.01
10 1.66± 0.04 1.72± 0.01 1.69± 0.03
15 2.44± 0.16 2.21± 0.04 2.33± 0.12
20 2.82± 0.20 3.30± 0.09 3.06± 0.24
25 4.21± 0.10 4.58± 0.08 4.40± 0.19
30 Not measured 7.14 7.14

Average
relative error
(%)

4.4 2.9 3.2

solids volume fractions >20 and >6.25 vol.%, respectively,
have to be considered as concentrated.

Figs. 1–3 show the measured relative viscositiesηr,
together with error bars (for the wollastonite suspensions)
and the fit curves obtained by non-linear regression via Eqs.
(13) (Krieger fit, dashed lines) and(14) (Maron–Pierce fit,
full lines). The vertical asymptotics indicate the correspond-
ing critical volume fractionsφc obtained by fitting. Since the
data series of both starch suspensions are sufficiently close
to each other (as expected), average values have been used
for fitting in this case.

Tables 8 and 9list the values of the fit parameters [η]
andφc, together with the correlation coefficientsC as a mea-
sure of the quality of the fit, determined using the Krieger

Table 7
Relative viscositiesηr of wollastonite suspensions in dependence of the
wollastonite volume fraction (wollastonite density� = 2.9 g/cm3)

Volume fraction (%) WM 45 HSV 45

1 1.00± 0.16
2 1.00± 0.10 1.0
3 1.03± 0.20
4 1.1
5 1.18± 0.23
6 1.27± 0.22
7 1.42± 0.19
8 1.99± 0.30
9
1
1
1
1 le
1
1
2
2
2
2

A

q.(20)by assuming a minimum Feret diameterb of 10�m in
he particle volume formula (Eq.(27)). The resulting Ṕeclet
umbers at room temperature (T = 25◦C) areP = 6.2× 109

nd 12.4× 109 for WM 45 and HSV 45, respectively, whic
learly corresponds to the case of weak Brownian mo
he theoretically predicted intrinsic viscosities [η] for this
ase are approximately 2.5, 2.8–2.9 and 3.9–4.0 for s
R̄ ≈ 1), WM 45 (R̄ ≈ 5) and HSV 45 (̄R ≈ 16), respectivel
cf.Table 2and Eq.(35)). Using the empirical expression p
osed by Kitano et al.22 (Eq.(15)), we would predict critica
olume fractionsφc of 52.8, 47.8 and 34.0% for starch, W
5 and HSV 45, respectively.

Tables 6 and 7list the measured relative viscositiesηr for
he two types of starch suspensions (corn and wheat) an
wo types of wollastonite suspensions. The estimated
ive errors are 3–4% for the starch suspensions and 15
or the wollastonite suspensions. Suspensions of HS
ith volume fractions >12 vol.% and of WM 45 with volum

ractions >24 vol.% could not be measured in the visco
er (due to blocking and apparent wall slip phenomena
ow curve exhibits a steep non-linear uprise followed
npredictable fluctuations, not to be confused with true sh

hickening behavior, which must be excluded on theore
rounds). In contrast, starch suspensions were meas
p to concentrations of approximately 30 vol.%. Accord

o the Doi–Edwards classification of concentrational reg
cf. Eqs.(7)–(11)andTable 1), WM 45 and HSV 45 suspe
ions can be considered as dilute only when the solids vo
raction is <4 and 0.4 vol.% (!), respectively. In terms of
lassification scheme, WM 45 and HSV 45 suspensions
2.48± 0.42
0 1.55± 0.21 3.04± 0.51
1 16.0
2 1.76± 0.23 30.6
4 1.85± 0.27 Not measurab
6 2.53± 0.33
8 3.41± 0.51
0 4.25± 0.65
2 5.07± 0.73
4 6.14± 0.89
6 Not measurable

verage
relative error
(%)

15 17
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Fig. 1. Concentration dependence of the relative viscosity of starch suspensions (filled circles: corn starch; empty circles: wheat starch); dashedline: Krieger
fit; full line: Maron–Pierce fit (the corresponding critical volume fractionsφc obtained by fitting are indicated as vertical asymptotics).

Fig. 2. Concentration dependence of the relative viscosity of suspensions with wollastonite WM 45; measured data (empty squares), Krieger fit (dashed line),
Maron–Pierce fit (full line); the corresponding critical volume fractionsφc obtained by fitting are indicated as vertical asymptotics.

Fig. 3. Concentration dependence of the relative viscosity of suspensions with wollastonite HSV 45; measured data (empty squares), Krieger fit (dashed line),
Maron–Pierce fit (full line); the corresponding critical volume fractionsφc obtained by fitting are indicated as vertical asymptotics.



158 W. Pabst et al. / Journal of the European Ceramic Society 26 (2006) 149–160

Table 8
Fit parametersφc and [η] (and correlation coefficientsC) for the concen-
tration dependence of the relative viscosity of suspensions with different
materials obtained with the Krieger relation

Material φc (%) [η] C

Corn starch 76.0 4.72 0.994
Wheat starch 61.3 4.77 0.999
Average of both starch types 53.1 4.44 0.999
WM 45 36.3 4.70 0.992
HSV 45 13.0 10.2 0.975

Table 9
Fit parametersφc, estimates for the intrinsic viscosity [η]est and correlation
coefficientsC for the concentration dependence of the relative viscosity of
suspensions with different materials obtained with the Maron–Pierce relation

Material φc (%) [η]est C

Corn starch 48.5 4.12 0.992
Wheat starch 47.7 4.19 0.997
Average of both starch types 47.9 4.18 0.999
WM 45 40.1 4.99 0.991
HSV 45 14.7 13.6 0.952

relation (Eq.(13)) and the Maron–Pierce relation (Eq.(14)),
respectively. Mere visual inspection shows (and the correla-
tion coefficients confirm) that the fits are excellent for starch
and WM 45 suspensions, but relatively bad for HSV 45 sus-
pensions, which is related to the high uncertainty of the
values for 11 and 12 vol.% HSV 45 suspensions. Notwith-
standing these minor details, however, it is evident that all
experimentally determined intrinsic viscosity values are sig-
nificantly higher than the theoretically predicted ones. In
particular, the measured intrinsic viscosity of starch sus-
pensions is almost the same as that of the low-aspect-ratio
wollastonite WM 45. This might be a consequence of the
fact that in real systems attractive interactions of electrostatic
origin (causing particle agglomeration in suspensions) can-
not be excluded to the necessary degree. It is clear that, in
order to obtain the correct value of intrinsic viscosity in the
dilute limit, the effective viscosities at higher concentrations

(non-dilute range) must be minimized. In principle, this can
be achieved by optimal deflocculation and stabilization of
the suspension with the help of an appropriate dispersant. In
our case, however, the situation is complicated by the pres-
ence of the organic component (saccharose), which makes
possible cross-interactions hard to predict. Apart from inter-
action effects, which cause the measured intrinsic viscosities
to be too high, it may also argued that the predicted intrin-
sic viscosities are too low because of the fact that the aspect
ratio used for prediction purposes here is only an average
aspect ratio and it is well thinkable that the actual intrinsic
viscosity is determined mainly by the highest aspect ratios
occurring in the system. Interestingly, the intrinsic viscos-
ity values experimentally determined in this work for starch
and the low-aspect-ratio wollastonite WM 45 (range 4.2–5.0)
are remarkably close to the intrinsic viscosity value 4.5 rec-
ommended by the Bačinskij formula (Eq.(6)). This finding
seems to be in agreement with long-term experimental expe-
rience of other authors.10,11

Similar conclusions can be drawn with respect to the crit-
ical volume fractions determined in this work. While for sys-
tems with isometric particles (starch suspensions), the critical
volume fraction determined is approximately 53% (according
to the Krieger fit) or 48% (according to the Maron–Pierce fit),
in satisfactory agreement with the prediction via the empir-
ical formula of Kitano et al. (Eq.(15)), φ values for the
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ion (agglomeration) and, possibly, an increased influen
igh-aspect-ratio particles in the system. By linear fitting
alues (Maron–Pierce fit parameters) inFig. 4, we obtain a
itano-type expression with the following numerical coe
ients

c = 0.51− 0.0223R̄. (36)

ote that, compared to Eq.(15), especially the slope of th
egression line is increased, i.e. in the presence of interac

Maron–Pierce relation) on the average particle aspect ratioR; filled square
pty squares and dashed line are data and linear regression line, rectively, of
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the critical volume fraction (at which blocking of the flow-
ablility occurs) is much lower for particles with a comparable
degree of anisometry.

5. Conclusion

This paper is intended to serve as a guideline for future
experimental research on the rheology of fiber suspensions.
In particular, we have given a very simple relation (Eq.(35))
for the dependence of the intrinsic viscosity on aspect ratio,
which approximates the highly sophisticated Brenner relation
(17) for many practical situations with sufficient precision.
This approximate relation, formally the “non-Brownian”
counterpart of the widely used Kuhn–Kuhn relation(31) for
low-aspect-ratio Brownian particles, might be appealing to
other investigators and is to enable easy comparison of theo-
retical predictions and experimental findings.

For the special case of wollastonite suspensions, the find-
ings of this work clearly demonstrate that it is not possible
to predict the intrinsic viscosity of these suspensions via
the theoretically sound and well-founded Brenner formula
(17) or its practical short-hand version(35). Consequently,
even in the dilute limit the relative viscosity cannot be pre-
dicted by simply inserting Brenner’s value of [η] into the
Jeffery–Einstein relation(4). The probable reasons (parti-
c ems)
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or polydisperse short-fiber suspensions.

cknowledgements

This work was part of the bilateral project “Size a
hape characterization of particles in ceramic science
echnology”, supported by the Czech Ministry of Educat
outh and Sports and the German Bundesministeriumür
orschung und Technik (Grant No. CZE 01/012) and
esearch programme “Preparation and properties of adva
aterials—modelling, characterization, technology”, s
r

8. Happel, J. and Brenner, H., The viscosity of particulate sys
Low Reynolds Number Hydrodynamics. Martinus Nijhoff, The Hague
1983, pp. 431–473.
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Technicko-v̌edecḱe nakladatelstv́ı, Prague, 1952, pp. 32 and 142
Czech].
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1. Nývlt, J., Viskozita suspenzı́ [Viscosity of suspensions].Chem. Listy,
2000,94, 45–47 [in Czech].

2. Brenner, H., Rheology of a dilute suspension of axisymmetric B
nian particles.Int. J. Multiphase Flow, 1974,1, 195–341.

3. Zirnsak, M. A., Hur, D. U. and Boger, D. V., Normal stresses in fi
suspensions.J. Non-Newtonian Fluid Mech., 1994,54, 153–193.

4. Petrie, C. J. S., The rheology of fibre suspensions.J. Non-Newtonian
Fluid Mech., 1999,87, 367–402.

5. Petrich, M. P., Koch, D. L. and Cohen, C., An experimental dete
nation of the stress–microstructure relationship in semi-concen
fiber suspensions.J. Non-Newtonian Fluid Mech., 2000,95, 101–133
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0. Lehmann, M.,Korngrössen- und Kornformcharakterisierung an Kao-
linen, Ein Vergleich von Laserbeugungs- und Sedimentationsmetho-
den. M.Sc. thesis, Universität Tübingen, 2003.
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